An algorithm and estimates for the Erdős–Selfridge function

Brianna Sorenson, Jonathan P Sorenson, Jonathan Webster

Research output: Contribution to journalArticlepeer-review

Abstract

Let  p ( n )  denote the smallest prime divisor of the integer  n . Define the function  g ( k )  to be the smallest integer  > k +1  such that  p ( ( g ( k ) k ) ) > k . We present a new algorithm to compute the value of  g ( k ) , and use it to both verify previous work and compute new values of  g ( k ) , with our current limit being
g (375)=12863999653788432184381680413559.
We prove that our algorithm runs in time sublinear in  g ( k ) , and under the assumption of a reasonable heuristic, its running time is
g ( k )exp [ c ( k loglog k ) / (log k ) 2 (1+ o (1)) ]  for  c >0.

Original languageAmerican English
JournalProceedings of the Fourteenth Algorithmic Number Theory Symposium (ANTS-XIV), Open Book Series
Volume4
Issue number1
DOIs
StatePublished - Dec 29 2020

Keywords

  • Erdos–Selfridge function
  • analytic number theory
  • binomial coefficients
  • elementary number theory

Disciplines

  • Theory and Algorithms
  • Number Theory

Cite this